
Abstract
The N - body problem is to simulate the motion of N particles
under the influence of mutual force fields based on an inverse
square law. Greengard’s algorithm claims to compute the cu-
mulative force on each particle in O (N) time for a fixed preci-
sion irrespective of the distribution of the particles. In this pa-
per, we show that Greengard’s algorithm is distribution depen-
dent and has a lower bound of Ω(N log2 N) in two dimensions
and Ω(N log 4 N) in three dimensions. We analyze the Greengard
and Barnes-Hut algorithms and show that they are unbounded
for arbitrary distributions. We also present a truly distribution
independent algorithm for solving the N-body problem in O (N
log N) time in two dimensions and in O (N log 2 N) time in three
dimensions.

1 Introduction

A large number of physical systems can be studied
by simulating the interactions between the particles con-
stituting the system. In a typical system each particle
influences every other particle, often based on an in-
verse square law such as Newton’s law of gravitation
or Coulomb’s law of electrostatic interaction. Examples
of such physical systems can be found in astrophysics,
plasma physics, molecular dynamics and uid dynam-
ics. Since the simulation involves following the trajec-
tories of motion of a collection of N particles, the prob-
lem is termed the N-body problem. Apart from tradi-
tional applications in the study of physical systems,
some problems in numerical complex analysis and el-
liptic partial differential equations can also be solved
using this approach. Applications of the problem are
also found in the radiosity method, which attempts to
create images by computing the equilibrium distribu-
tion of light for complex scene geometries.

Since it is not possible to solve the equations of
motion for a collection of four or more particles in
closed form, iterative methods are used to solve the N-
body problem. At each discrete time interval, the force

on each particle is computed and this information is used
to update the position and velocity of each particle. A
straightforward computation of the forces requires
O(N 2) work per iteration. The rapid growth with N
effectively limits the number of particles that can be
simulated by this method.

Several approaches have been used to reduce the
complexity per iteration. Some of the techniques in-
clude transforming the problem to a position-velocity
phase space, imposing a grid on the system of parti-
cles and computing cell-cell interactions. Such tech-
niques either fail to model the system accurately or de-
grade to O(N 2) complexity for non-uniform distribu-
tions of the particles.

Recently, a new class of particle simulation meth-
ods have emerged to solve the N-body problem. These
methods are characterized by an organization of the par-
ticles into a hierarchy of clusters, starting from a clus-
ter containing all the particles to clusters containing the
individual particles. These methods are usually referred
to as hierarchical methods or tree methods. Such a
method was first proposed by Appel [2], whose scheme
allows for clusters with arbitrary shapes.

A number of algorithms followed the work of Appel.
Widely respected among these are the Barnes- Hut [4]
and the Greengard [7] methods. Both depend on a data
structure constructed by a fixed hierarchical cubical sub-
division of the space. Salmon [14] studies the Barnes-
Hut algorithm in great detail. While Appel and Barnes-
Hut achieve required accuracy by restricting which clus-
ters may interact, Greengard uses multipole expansions
[7] to approximate the interactions to the desired preci-
sion. With the notable exception of Greengard, most
researchers paid little attention to a rigorous worst-case
complexity analysis of their algorithms. Greengard
claims his algorithm reduces the complexity to O (N)

Truly Distribution-Independent Algorithms for the N-body Problem*

Srinivas Aluru G.M. Prabhu John Gustafson
Ames Laboratory Computer Science Dept. Ames Laboratory

Iowa State University Iowa State University Iowa State University
Ames, IA 50011 Ames, IA 50011 Ames, IA 50011

*This work is supported by the Applied Mathematical Sci-
ences Program of the Ames Laboratory-USDOEunder contract
No. W-7405-ENG-82.

per iteration.

In this paper, we show that the Greengard’s al-
gorithm is not O (N), as claimed. Both Barnes-Hut and
Greengard’s methods depend on the same data struc-
ture, which we show is distribution-dependent. For the
distribution that results in the smallest run- ning time,
we show that Greengard’s algorithm is O (N log 2 N) in

two dimensions and O (N log 4 N) in three dimensions.
Both algorithms are unbounded for arbitrary distribu-
tions.

We have designed a hierarchical data structure
whose size depends entirely upon the number of par-
ticles and is independent of the distribution of the par-
ticles. Both Greengard’s and Barnes-Hut algorithms can
be used in conjunction with this data structure to re-
duce their complexity. Apart from reducing the com-
plexity of the Barnes-Hut algorithm, the data structure
also permits more accurate error estimation. The multi-
pole algorithm designed using this data structure has a
complexity of O (N log N) in two dimensions and O (N
log2 N) in three dimen sions. To the best of our knowl-
edge, this is the fastest distribution-independent algo-
rithm for the N-body problem.

The rest of the paper is organized as follows: In Sec-
tion 2, we analyze the complexity of Greengard and
Barnes-Hut algorithms. We derive lower and upper
bounds on the data structure used in these algorithms
and use this result to disprove claims on their complex-
ity. Section 3 contains the description of our new hier-
archical data structure. We also show how to use the
Greengard and Barnes-Hut algorithms on this data struc-
ture. An algorithm to create this new data structure is
described in Section 4.

2 The complexity of Greengard and Barnes-Hut
Algorithms

The Greengard and Barnes-Hut methods for comput-
ing N-body interactions consist of two alternating
phases, repeated every time step:

1. Computing a hierarchical tree data structure with
the leaves representing the particles and the root of
 the tree representing the entire system.

2. Traversing this data structure to compute the force
on each particle to a specified accuracy.

Figure 1: Barnes-Hut physical subdivision of space
for a collection of three particles in two dimensions.

The same data structure is used in both methods,
constructed as follows: Begin with a cell (square in two
dimensions and cube in three dimensions) big enough
to contain all the particles. Subdivide the cell into 2d

cells having half the side length of the original cell
(where d is the number of dimensions). Discard cells
that do not contain any particles. Stop the subdivision
process on cells having exactly one particle. Recursively
subdivide the cells that contain more than one particle.
This recursive subdivision of the space into cells is natu-
rally represented by a tree, which we shall refer to as
the Barnes-Hut (BH) tree.

Figure 1 shows the Barnes-Hut physical subdivi-
sion of the space for a collection of three particles posi-
tioned as shown. The corresponding BH tree is shown
in Figure 2. For convenience and simplicity, a two-di-
mensional problem is discussed but the results carry over
to three-dimensional problems as well. In two dimen-
sions, each cell is subdivided into four cells and the re-
sulting structure is a quad-tree. In the example shown,
the first subdivision separates particle 1 from particles
2 and 3. The next three subdivisions performed to sepa-
rate particles 2 and 3 are not successful as one of the
child cells at every level of the subdivision contains both
the particles and the other three contain none. The re-
cursive subdivision is continued until the particles 2 and
3 are separated.

1

2

3

Figure 2: The Barnes-Hut tree corresponding to the
physical subdivision of space in Figure 1.

From this example, it is clear that a large number of
recursive subdivisions may be required to separate
particles that are very close to each other. Let N be the
number of particles in the system and let s be the small-
est interparticle distance. We require s > 0 to avoid in-
finite interaction force. Let D be the length of a cell
that can contain all the particles. Clearly, the worst-case
path length of the BH tree is given by the worst-case
path needed to separate the two particles which are clos-
est to each other. The size of the smallest cell that can
contain two particles s apart in two dimensions is

 (in three dimensions, see Figure 3). The paths

separating the closest particles may contain recursive
subdivisions until a cell of length smaller than

reached. Since each subdivision halves the length of the

cells, the maximum path length is given by the smallest
k for which

In three dimensions,

Figure 3: Smallest cells that could possibly contain
two particles that are s apart in two and three di-
mensions.

In either case, the worst-case path length is
O(log) and the number of nodes in the tree is

bounded by O(N log).

Greengard assumes the length D of the cell con-
taining all the particles is one, which can be achieved
by appropriate scaling. Greengard’s arguments can be
summarized as follows: For a fixed machine precision,
only certain classes of particle distributions can be mod-
eled, independent of the algorithm used. Therefore, by
restricting attention to only those particle distributions
that can be modeled on a given machine, s has to be no
less than the smallest floating point number represent-
able. Thus, log is bounded by a constant, termed p.
The size of the tree is bounded by O(pN). Greengard
determines the running time of his algorithm in two di-
mensions to be N(α p 2 + β p + γ), where α, β and γ are
constants.

The above arguments imply that the height of the
tree is bounded by O(p), a constant. Yet, we know that
the height of a tree with N leaves and at most a constant
number of children per node is Ω(log N). How can this
disparity be explained?

The problem lies in the assumption that the param-
eters D and s are entirely dependent on the spatial dis-
tribution of the particles and not related to the number
of particles N. To understand why this assumption is
invalid, consider the behavior of as a function of N.

To minimize the ratio for a fixed N, all the par-
ticles should be at a distance of s from their nearest
neighbors. To see why, suppose this is not true. We can
reduce D by ‘moving-in’ particles that are farther than s

D
s D

s

D
s

D
s

D
s

<

{1, 2, 3}

{1} {2, 3}

{2} {3}

{2, 3}

{2, 3}

{2, 3}

 s
√2

 s
√3

 s
√3

 s
√2

 s
√2

 D s
2 k √2

k = log
√2D
 s

k = log
√3D
 s

Figure 4: The configuration minimizing the ratio of
the cell length containing all the particles and the
smallest interpartic le distance in two dimensions.
The ratio is minimized when all particles are a dis-
tance s from their nearest neighbors.

from each other, while keeping s the same. Or, we can
increase s by increasing the distance between particles
that are s apart, keeping D unchanged. In either case,
 decreases, contradicting minimality. Furthermore,
the particles must be packed as closely as possible. Fig-
ure 4 shows the configuration minimizing the ratio for

a fixed N in two dimensions. Each particle has six near-

est neighbors, all at a distance s. The particle is at the
center of the hexagon formed by its nearest neighbors.
The particles do not fit in a cell of size smaller than D x
D. Adding the particles column-wise,

for some constant c
1
 . Since this is computed using the

configuration minimizing the ratio , the worst- case
path length (log) is Ω(log N). In three dimensions,

In either case,

Since log is bounded by p, p is also Ω(log N). The
error in Greengard’s proof was the assumption that p
was independent of N.

How does this affect particle distributions that can
be modeled on a machine with precision parameter p?
It is already noted that not all distributions can be mod-
eled for any given N ≥ 3 because of precision limits.
However, unless p ≥ c log N (c a constant), no distribu-
tion can be modeled for that N. The very fact that we
are able to run an N-body problem for a collection of N
particles with precision parameter p implies that p ≥ c
log N. Thus, p cannot be taken as a constant in the analy-
sis of the running time of the algorithm and Greengard’s
algorithm is not O(N). Greengard’s time complexity in
two dimensions is N(αp2 + βp + γ), which is Ω(N log2

N). The three-dimensional complexity is N(αp4 +�βp2 +

γ), which is Ω(N log4 N).

Next, let us investigate how large can be for a

fixed N. For any N ≥ 3 particles, can be made arbi-
trarily large by reducing the distance between the clos-
est particles (thus reducing s), or by increasing the spread
of the particles (thus increasing D). Hence, the worst-
case path length does not have an upper bound as a func-
tion of the number of particles and is entirely depen-
dent upon the spatial distribution of the particles. This
immediately implies that the size of the BH tree is un-
bounded and can be arbitrarily large for a fixed N. Since
both the Greengard’s and Barnes-Hut algorithms con-
struct and visit each node in the BH tree at least once,
these algorithms are unbounded for arbitrary distribu-
tions.

Clearly, not all particle distributions can be mod-

N ≤ +1 + +1 2D
√3s

 D
√3s

D
s []

≥ √Nc1
D
s

D
s

D
s

log = Ω(log N)D
s

D
s

D
s

D
s

≥ c2 N
D
s

1
3

D
s

D
s

s

s

s

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

√3s

 2

 2D
√3s

N = +1 + + +1 + … (+1 terms)D
s

D
s

D
s

 1
√3N ≤ + 1 + +1 2

√3
)(D

s
D2

s2

eled on a given machine due to precision limits. But, an
algorithm whose running time depends upon the distri-
bution is undesirable. An analogy can be drawn to a
sorting algorithm whose running time depends on the
size of the numbers to be sorted. The complexity of a
sorting algorithm is O(n log n), provided basic opera-
tions on the numbers to be sorted (like comparison,
copying) can be accomplished in constant time. The
complexity of the algorithm does not remain O(n log n)
if this assumption is not valid. But, a sorting algorithm
with running time as a function of the size of the num-
bers to be sorted is undesirable. Similarly, it is reason-
able to assume that the distribution of the particles is
representable in a given machine but algorithms whose
running times depend on the distribution are undesir-
able.

3 A Modified Data Structure

The BH tree can contain a path on which every node
represents the same set of particles, though each node
represents a cell of a different size. Such a path can be
arbitrarily large irrespective of the total number of par-
ticles. Each node on the path represents a cell of ex-
actly half the length of the cell represented by its par-
ent. Our intent is to rectify this unbounded nature of the
BH tree.

Let v
1
, v

2
, …, v

k
 (k ≥ 2) be a maximal path in the BH

tree such that each node of the path represents the same
set of particles. The maximality of the path ensures that
v

1
’s parent has more particles than v

1
 and no child of v

k

has the same particles as v
k
. Since only cells having more

than one particle are subdivided, it is imperative that v
k

have at least two child nodes. We can also assume with-
out loss of generality that v

1
 has a parent. Otherwise, v

1
has to be the root of the tree, thus containing all the
particles in the system. By the property of the path v

1
,

v
2
, …, v

k
, v

k
 also contains all the particles in the system.

This simply means that our choice of the initial cell is
too large for the system of particles and a cell length
of it (this is the cell represented by v

k
) can contain the

entire system. In this case, we can safely make the
subtree rooted at v

k
 be the BH tree. Therefore, it can be

assumed that v
1
 always has a parent. Furthermore, v

i
 is

the only child of v
i
–1 (1 < i ≤ k).

Consider such a maximal path v
1
, v

2,
 …, v

k
 . Every

node on such a path represents the same particles, but
using cells of different sizes. Nodes in the BH tree are
used to store aggregate information on the collection of
particles they represent. For example, the Barnes-Hut
method keeps track of the total mass and the center of
mass of the collection of particles. Greengard’s method
computes the multipole expansion of the collection of
particles. Since every node on such a path represents
the same particles, they all contain the same informa-
tion. Therefore, a modified tree obtained by eliminat-
ing this redundancy should contain the same informa-
tion as the BH tree.

Consider the tree obtained by replacing every such
maximal path by the last node on the path. The modi-
fied tree has N leaves, one per particle and the root of
the tree contains all N particles, just as in the Barnes-
Hut tree. The only deviation is that no internal node can
have the same particles as one of its children. Since the
number of particles contained by a node is the sum of
the number of particles contained by its children, this
translates to the condition that each internal node has at
least two children. Let S(N) be the number of nodes in
the modified tree for a collection of N particles in d
dimensions.

These equations are satisfied by S(N) ≤ 2N – 1, and
the size of the tree is bounded by O(N) in any dimen-
sions. A tree containing N leaves has a size Ω (N), prov-
ing the optimality of the modified tree. Since each child
contains at least one particle less than its parent, the
path length is also bounded by O(N).

3.1 The Barnes-Hut method using the modified data
structure

In the Barnes-Hut method [4], the BH tree is tra-
versed once for every particle in the system to approxi-
mate the force acting on the particle due to the rest of
the system. The force on any particle p is approximated
using the following recursive calculation: Let l be the
length of the cell currently being processed. Let d be
the distance between the particle and the center of mass
of the cell under consideration. If < θ, where 0 ≤ θ < 1

th 1
2k

S(1) = 1

N
i
 = N

k

Σ
i = 1

S(N) = 1 + S(N
i
) (2 ≤ k ≤ 2 d)

k

Σ
i = 1

 l
d

rooted at v
k
, which is the same for both trees. In either

case, the force computations give the same result on
both trees. The modified tree rectifies the unbounded
nature of the Barnes-Hut tree without changing the force
calculations of the Barnes-Hut algorithm. However, it
improves the Barnes-Hut algorithm in two important
ways: First, the running time of the algorithm is reduced.
In fact, the worst-case traversal on the Barnes-Hut tree
is unbounded as the BH tree is unbounded. The modi-
fied tree also allows for more accurate error estimation.
The error in approximating the force between a particle
p and a cluster of particles by treating the cluster as a
single particle of equivalent mass located at the center
of mass is proportional to , where dr is the radius
of the cluster and r is the distance of its center of mass
from p. In the Barnes-Hut algorithm, the error created
by treating the cell represented by node v

i
 as a single

particle is therefore proportional to

If v
1
, v

2
, …, v

k
 is a maximal path in the Barnes-Hut tree

with every node containing the same particles and the
Barnes-Hut tree traversal stopped at some v

i
 (1 ≤ i ≤ k),

the error made is computed to be proportional to

This is an overestimation of the error because the ra-
dius of the cluster of particles is taken to be l(v

i
) whereas

the radius is in fact bounded by l(v
k
) =

A traversal on the modified tree computes the same force
with an error estimate proportional to

The error estimate at this node is thus improved by a
factor of 2 2(k – i).

3.2 Greengard’ s method using the modified data
structure

Greengard’s fast multipole algorithm [7] is a two-
pass procedure on the BH tree. The first pass is a bot-
tom-up traversal of the tree in which a p-term multipole
expansion is formed at every node of the tree, where p
is a precision parameter. The multipole expansions at
the leaves are computed directly. At any internal node,

is a prespecified accuracy criterion, the cell is treated
as a single particle of equivalent mass located at the
center of mass for the purpose of force calculation. Oth-
erwise, the children of the cell are examined recursively
to com- pute the force on p. The force calculation starts
by examining the root cell. This calculation is repeated
once for every particle in the system.

Let v
1
, v

2
, …, v

k
 be a maximal path in the BH tree

such that each node contains the same particles and let
v

0
 be the parent of v

1
. In the modified tree, v

k
 is the

child of v
0
. Suppose that the node v

1
 is reached while

traversing the Barnes-Hut tree to compute the force on
a particle p. Either the tree traversal stops at some v

i
 (1

≤ i ≤ k) or the traversal proceeds to the children of v
k
.

Let l(v
i
) be the length of the cell, cm(v

i
) be the center

of mass, and M (v
i
) be the total mass of the particles in

the cell represented by node v
i
. Note that

 M(v
1
) = M(v

2
) = … = M(v

k
)

cm(v
1
) = cm(v

2
) = … = cm(v

k
)

l(v
1
) = 2l(v

2
) = 22 l(v

3
) = … = 2 k-1 l(v

k
)

If the traversal stopped at some v
i
 (1 ≤ i ≤ k),

where d(p, cm(v
i
)) is the distance from p to the center

of mass of the cell represented by v
i
 and θ is the accu-

racy criterion. Since v
j
 is the only child of v

j-1
(1 < j ≤ k), the force contributed by the subtree rooted
at v

1
 is the force between p and a mass of M (v

i
) lo-

cated at cm(v
i
). In traversing the modified tree, v

k
 is

reached instead of v
1
. Since k ≥ i,

= < θ

The force contributed by the subtree rooted at v
k
 is the

force between p and a mass of M(k) located at cm(v
k
),

which is the same as the force contributed by the subtree
under v

1
 in the Barnes-Hut tree.

If the Barnes-Hut tree traversal proceeds to the chil-
dren of v

k
, the same happens in the modified tree also.

The force contributed by the subtree rooted at v
1
 in the

Barnes-Hut tree is the force contributed by the subtree

.

 l(v
i
)

d(p, cm(v
i
))

< θ,

 l(v
k
)

d(p, cm(v
k
))

 1

2 k-i

 l(v
i
)

d(p, cm(v
i
))

2
()dr

r

2

() l(v
i
)

d(p, cm(v
i
))

 l(v
i
)

d(p, cm(v
i
))()

2

l(v
i
)

2 k-i

2

() = () l(v
k
) 1 l(v

i
)

d(p, cm)v
k
)) 22(k – i) d(p, cm(v

i
))

2

the multipole expansion is formed by shifting the mul-
tipole expansions of the child nodes to the center of the
cell represented by the node and adding them together.
In the second pass, the tree is traversed top-down to
compute the local expansions at every node. The local
expansion at a node is formed by shifting the local ex-
pansion at the parent node to its center, shifting the
multipole expansions of the well-separated children of
the nearest neighbors of the parent of the node to its
center and adding them together. Finally, the local ex-
pansions at every leaf are evaluated to compute the
approximate cumulative force on each particle. For a
detailed description of Greengard’s algorithm, see [7].

Consider a run of the Greengard’s algorithm on the
BH tree containing a path v

1
, v

2
, …, v

k
, where each

node represents the same particles. Since v
i
 is the

only child of v
i –1

 (1 < i ≤ k), the multipole expansion at
v

i –1
 is formed by shifting the multipole expansion of v

i
to the center of the cell represented by v

i –1
. The multi-

pole expansions at these nodes are merely translations
of one another. Since v

1
, v

2
, …, v

k
 is a chain, the multi-

pole expansions at these nodes are useful only to com-
pute the multipole expansion of v

1
’s parent. However,

the contribution by v
1
’s multipole expansion to the mul-

tipole expansion of its parent can be directly obtained
by shifting the multipole expansion of v

k
 to the center

of the cell represented by the parent of v
1
. Thus, com-

puting the multipole expansions at v
1
, v

2
, …, v

k–1
 is

unnecessary and is avoided by the modified tree. A simi-
lar argument shows that the correct local expansions at
the leaves can be obtained using the modified tree.

In the multipole algorithm designed to run on the
modified tree, the precision parameter p is a constant
since it can be chosen independent of N. In the
Greengard’s algorithm, p has a lower bound of log N.
This is because p is also used as an upper bound on the
worst-case path length (log) of the BH tree, which

has a lower bound of log N. Therefore, p cannot be
chosen independent of N and is also a function of the
distribution of the particles. In the multipole algorithm
on the modified tree, the precision parameter is merely
a function of the desired accuracy of the force calcula-
tions chosen independent of the number and distribu-
tion of the particles.

The new algorithm consists of two traversals of the
modified tree. Computing the p-term multipole/local
expansions at a node take constant time. Evaluating a

D
s

p-term local expansion for every particles also takes
constant time. Since the number of nodes in the modi-
fied tree is O(N), running the multipole algorithm on
the modified tree takes O(N) time. This is irrespective
of the distribution of the particles.

The running time of this algorithm depends on the
complexity of the tree creation and the complexity of
performing the force calculations. It is already noted
that the force computations can be performed in O(N)
time on the modified tree. In the next section, we show
that the modified tree can be created in O(N log N) time
in two dimensions and in O(N log2 N) time in three di-
mensions. Thus, the new multipole algorithm has a com-
plexity of O(N log N) in two dimensions and O(N log2

N) in three dimensions.

4 Creating the Modified Tree

This section describes an algorithm to construct the
modified tree for a collection of N particles. The con-
cepts are illustrated with two-dimensional �figures for
convenience, but the results are applicable to three-di-
mensional problems as well. First, some terminology:

The physical space containing the particles is sub-
divided using cells. A cell is completely determined by
the length of an edge of the cell and the position of one
of the corners of the cell. The corner is chosen to be the
point in the cell with the smallest value for each coordi-
nate. In two dimensions, this is the lower, leftmost cor-
ner. Let l be the length of a cell. In order to describe the
subcells of this cell, the corner of this cell is taken to be
the origin. The cell contains 2kd cells of length . The

cells are positioned at (i , j) (0 ≤ i, j < 2k –1)
in two dimensions. A line is called a k-boundary if it
contains an edge of a cell of length . There are
2k + 1 lines parallel to each axis and spaced apart
that are k-boundaries. The intersections of the k-bound-
aries determine the cells of size . Any k-boundary is
also a j-boundary for every j > k. See Figure 5. In three
dimensions, a k-boundary is a plane containing a sur-
face of a cell of size . Note that the description of the
subcells and the boundaries is relative to a cell.

A simple recursive algorithm for creating the mod-
if ied tree for a cell containing a collection of particles is
given below:

 l
2k

 l
2k

 l
2k

 l
2k

 l
2k

 l
2k

 l
2k

tion, the corner of c is chosen to be the origin. Let b be
the smallest box (a rectangle in two dimensions) con-
taining all the particles of c. The rectangle is given by
(x

min
,y

min
), (x

max
,y

min
), (x

max
,y

max
), (x

min
,y

max
), where x

min
is the smallest x coordinate of all the particles in c etc.
The smallest cell in c containing all the particles should
also contain the box b. A cell of size encloses b iff
no k-boundary passes through b (see Figure 5). The
smallest cell enclosing b is of size ,where k is
the smallest integer for which a k-boundary passes
through b. To determine this, we can examine bound-
aries parallel to each coordinate axis in turn.

Consider boundaries parallel to the y-axis. These
can be specified by their distance from the y-axis. The
family of k-boundaries is specified by i ,0 ≤ i ≤�2k .

We need to �find the smallest integer k such that a
k- boundary parallel to y-axis passes through b, i.e. the
smallest k such that x

min
< i < x

max
 for some i. By

minimality of k, only one k-boundary passes through
b. Let j be the smallest integer such that < (x

max
 –

x
min

). j = log2 . There is at least 1 and at
most 2 j-boundaries passing through b. These bound-
aries are given by h1 = and

h2 = . Since k ≤ j, any k-boundary is
also a j-boundary, forcing the k-boundary passing
through b to coincide with h

1
 or h

2
. Let a be

 . h
1
 = a and h

2
 = h

1
 or (a + 1) . If

h2 ≠ h1, let a’ be the even integer among a and a+1.

Otherwise, let a’ be equal to a. It is clear that j – k is
equal to the highest power of 2 that divides a’. One
way to �find this is j – k = log

2
(1 + {a’ ⊕�(a’–1)}) –1.

Since all the above operations take constant time, the
smallest cell contained in c enclosing the box b can be
determined in constant time.

It is already established that the modified tree has
O(N) nodes. The tree is created top-down starting at
the root. At each node, the particles with the smallest
and the largest coordinates in each dimension (x

min
, x

max
,

y
min

 and y
max

 in two dimensions) are computed to iden-
tify the smallest box enclosing all the particles repre-
sented by the node. The smallest cell enclosing this
box is computed and the children of the node deter-
mined in constant time. Note that the particles are not
distributed among the child nodes. Such a distribution

Figure 5: A cell of length l and the smallest box b
enclosing all the particles in this cell. The big dashed
lines are 1-boundaries, the small dashed lines are 2-
boundaries and the dotted lines are 3-boundaries. 2-
boundaries are also 3-boundaries and 1-boundaries
are also 2-boundaries and 3-boundaries.

BuildTree(c)

1. Find the smallest cell c’ contained in c that still con
tains all the particles contained in cell c.

2. If c contains no particles, return ‘empty tree’.
3. If c contains exactly one particle, return the one node

tree c.

4. Split the cell c’ into 2 d subcells.
5. For each subcell sc of c’, BuildTree(sc).
6. Return the tree obtained by joining all the trees ob

tained in the previous step, with c’ as the root of the
tree.

BuildTree is initially called with a cell large enough
to contain all the particles in the system. The running
time of BuildTree can be computed by the amount of
work done at every node of the modified tree, which is
steps 1-4 and 6. Steps 4 and 6 require a constantamount
of work at every node of the modified tree. Steps 2 and
3 can be accomplished as a byproduct of Step 1, as we
shall see later. Step 1 can be accomplished as follows:

Let l be length of the cell c passed as input to
BuildTree. Any cell smaller than c but contained in c
has length for some k > 0. By a suitable transforma- l

2k

 l
2k

 l

2 j l

2 j

 l
2 j

 l
2k

 l
2k

 l
2 j

 l
x

max
 – x

min

 l
2 j

2 j x
min

 l

2-boundary

1-boundary

3-boundary

b

 l
2k – 1

2 j x
max

 l

2 j x
min

 l

would result in O(N2) time for tree creation. Distribut-
ing the particles to the child nodes is not necessary
provided we can determine the particles with extreme
coordinates in the child nodes. Except for this task, the
rest of the computations are done in constant time per
node, for a total of O(N) time.

In BuildTree, we also need to determine cases where
the cell contains exactly one particle or none. This can
be determined as a byproduct of the computation of
the smallest box b containing all the particles in the
cell. If x

min
 = x

max
 and y

min
 = y

max
, the cell contains ex-

actly one particle. If the answer to any of the 4 queries
is < none >, the cell is empty and can be discarded.

Finding the points with extreme coordinates can
be translated to a range query problem, stated as fol-
lows: Given N points, set up a data structure to answer
queries of the form ‘which point has the smallest x-
coordinate among the points that lie in a given square?’
efficiently. Since the modified tree has O(N) nodes and
we require four such queries per node (eight in three
dimensions), the number of queries is O(N). The range
query problem can be solved in O(N log N) prepro-
cessing time and O(log N) query time in two dimen-
sions. The corresponding times for three dimensions
are O(N log2 N) and O(log2 N) respectively. The solu-
tion makes use of Priority Search Trees [12] and is
omitted in the interest of brevity. The time required for
preprocessing and answering O(N) queries is O(N log
N) in two dimensions and O(N log2 N) in three dimen-
sions. Consequently, the modified tree can be created
in O(N log N) time in two dimensions and O(N log2 N)
time in three dimensions.

5 Conclusions

The N-body problem has a lower bound of Ω(N) to
compute all pairwise interactions. In light of the proof
that the Greengard’s method is not O(N), the fastest
distribution-independent algorithm has a complexity
of O(N log N) in two dimensions and O(N log2 N) in
three dimensions. This complexity is mainly due to the
hierarchical tree creation. A linear time algorithm to
update the tree structure results in an algorithm with
complexity matching the lower bound. The pos- sibility
of such an algorithm remains to be investigated.

Acknowledgments

The authors wish to thank Dr. Ravi Janardhan for
suggesting the use of priority search trees to solve range
query problems.

References

[1] S. Aluru, Distribution-independent hierarchical
N-body methods, Ph.D. thesis, Iowa State Uni-
versity, 1994.

[2] A.W. Appel, An efficient program for many-
body simulation, SIAM J. Sci. Stat. Comput., 6
(1985) 85-103.

[3] J. Barnes, A modified tree code: Don’t laugh; It
runs, J. Comput. Phys., 87 (1990) 161-170.

[4] J. Barnes and P. Hut, A hierarchical O(N log N)
force-calculation algorithm, Nature, 324 (1986)
446-449.

[5] S. Bhatt, M. Chen, C.Y. Len and P. Liu, Ab-
stractions for parallel N-body simulations, Tech.
Rep. DCS/TR-895, Yale University, 1992.

[6] K. Esselink, The order of Appel’s algorithm,
Info. Proc. Letters, 41 (1992) 141-147.

[7] L. Greengard, The rapid evaluation of potential �
fields in particle systems, MIT Press, Cambridge,
MA, 1988.

[8] L. Hernquist, Vectorization of tree traversals, J.
Comp. Phys., 87 (1990) 137-147.

[9] R.W. Hockney and J.W. Eastwood, Computer
simulation using particles, McGraw-Hill, New
York, 1981.

[10] J. Katzenelson, Computational structure of the
N-body problem, SIAM. J. Sci. Stat. Comput., 10
(1989) 787-915.

[11] J. Makino, Vectorization of a treecode, J. Comp.
Phys., 87 (1990) 148-160.

[12] E.M. Mc Creight, Priority Search Trees, SIAM
J. Comput. (1985) 257-268.

[13] L. Greengard and V. Rokhlin, A fast algorithm
for particle simulations, J. Comp. Phys., 73
(1987) 325-348.

[14] J.K. Salmon, Parallel hierarchical N-body meth-
ods, Ph.D. thesis, California Institute of Tech-
nology, 1990.

[15] J.P. Singh, Parallel hierarchical N-body methods
and their implications for multiprocessors, Ph.D.
thesis, Stanford University, 1993.

[16] J.P. Singh, C. Holt, T. Totsuka, A. Gupta and
J.L. Hennesy, Load balancing and data locality

in hierarchical N-body methods, Journal of Par-
allel and Distributed Computing, to appear.

[17] M.S. Warren and J.K. Salmon, Astrophysical
N-body simulations using hierarchical tree data
structures, Proc. Supercomputing ’92 (1992)
570- 576.

[18] M.S. Warren and J.K. Salmon, A parallel hashed
oct-tree N-body algorithm, Proc. Supercomput-
ing ’93 (1993) 1-12.

[19] F. Zhao and L. Johnsson, The parallel multipole
method on the connection� machine, SIAM. J.
Sci. Stat. Comput., 12 (1991) 1420-1437.

 * * * * * * * * * * * *

